Chapter 0172 One interview cleared his throat. "Yes, but not entirely.
"What are quasicrystals?" "Quasicrystals are a type of crystal structure where the atoms are arranged in a non-repetitive and non- periodic symmetrical pattern "The arrangement of atoms is somewhere between crystalline and amorphous structures. The person who discovered this is Danny Shechman. He won the Noble Prize for Chemistry in 2011 for this discovery.
"Oh, I see... Wait! You said the Noble Prize in what?" "Chemistry." "Uh, aren't we interviewing a biology graduate student today?" Why would Paul ask about physics and chemistry? *Dr. Jefferson already mentioned that his questions wouldn't be limited to just biology." Tch! To be honest, this question is too difficult for an undergraduate." "She answered the previous questions well, but she's just unlucky to be targeted by Paul..." "Is it too hard?" Paul asked calmly, "Of course, you can also choose not to answer." Miranda looked up and met his gaze. "Do you have a whiteboard and marker pens?" The key to this question was how she could support her explanation with data. Paul was assessing her interdisciplinary skills and knowledge.
Follow on NovᴇlEnglish.nᴇt"Yes." Paul signaled to the staff to prepare the materials. Soon, a whiteboard was set up, and a marker was handed to her.
Miranda turned toward the board and began writing a chemical formula. She used the formula as a starting point to analyze the atomic structure of quasicrystals.
There were two key principles involved, the icosahedral principle and the golden raprinciple. Under these principles, Miranda obtained the structural model of the simplest quasi-crystal.
Thus, this model could explain the details of the high-resolution image of Al-Ma-quasicrystals. This part was in the field of chemistry.
Next, Miranda delved into the fields of fractal geometry, pattern sequences, correlation measures, and correlation dimensions to derive a formula for quasicrystals.
Within the discussion of pattern sequences, she conducted a detailed analysis under 2nd order, 3rd order, and k- order sequences. This part was under the domain of mathematics.
Miranda quickly moved on to the next board as the one before her was filled with Danglish text and mathematical symbols. Now, she was tackling the core of the question, which was the physics explanation.
Miranda divided the topic into two major parts-heoretical physics and applied physics. For the 1/2 +25 BONUS Chapter 0172 theoretical section, she covered the three main theorems, seven major formulas, and 16 derived sub- theories. Not only did she write them all down by memory, but she also created scenarios and substituted specific numbers to verify their accuracy. When she was faced with situations where substitution wasn't possible, she proceeded to prove her formula then and there.
Follow on Novᴇl-Onlinᴇ.cᴏmWhen she was confronted with a problem, she tried to solve it. If she failed, she circumvented it with another solution. Although her approach was direct and straightforward, it was quite effective.
As for the applied physics section, it was much more extensive.
Miranda explained the influence of deformation and heat treatment on the properties of 00CrNigм64Cu2 martensiti@stainless steel. Next, she noted the microstructure and properties of quasicrystal-reinforced Mg-Zn-Re alloys.
After that, Miranda demonstrated the diffraction properties of one-dimensional onal Fibonacci stove om quasicrystals, undercooled A172Ni12C016 alloys, and the solidification behavior of icosahedral quasicrystals. One by one, she wrote all these down. Soon, the second whiteboard was crammed full with her writing. Paul signaled the staff to bring in a third whiteboard.
Finally, Miranda concluded with three derived formulas and provided m merical models that could be used numerical for verification before wrapping up her answer perfectly. She set down the marker and turned to Paul. "This is my answer." After a moment, a slight smile appeared on his stern face. "Thank you for your answer. You may leave now."